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ABSTRACT 

Detecting and understanding patterns of distribution shifts and range 

expansion/contraction for fish populations is important to explore potential mechanisms for 

population dynamics and communicate changes in stock status. In this study, we developed a 

spatio-temporal model for the small yellow croaker (“yellow croaker”; Larimichthys 

polyactis) population of the Yellow Sea for the period 2001-2017. This model was fitted to 

biomass catch rate data collected by the fixed-station bottom trawl surveys conducted in the 

Yellow Sea in the winter (January) of 2001–2011 and 2015–2017. The spatio-temporal model 

accounts for both spatial and spatio-temporal structure at a fine scale, and can potentially 

include the effects of sea surface temperature and of an annual index, the Pacific Decadal 

Oscillation, which is represented using a recently-developed spatially-varying coefficient 

model. We employed the spatio-temporal model to estimate changes in the northward and 

eastward centers of gravity (COGs) and effective area occupied of yellow croaker over the 

period 2001-2017, to reveal patterns of distribution shifts and range expansion/contraction for 

the species. We selected a spatio-temporal with no covariates based on Akaike’s Information 

Criterion. This model estimated that the COG of yellow croaker moved north and west 

between 2001 and 2010, and then south and west over the period 2010-2017. Only the 

westward shifts of yellow croaker COG were found to be statistically significant. These 

results reflected the progressive disappearance of yellow croaker density hotspots (i.e., 

highest density areas) in the north and southeast areas of the Yellow Sea that was predicted by 

the spatio-temporal model, which resulted in the central area of the Yellow Sea becoming the 

only yellow croaker density hotspot in 2017. This finding has important implications for 

fisheries management in the context of the China-South Korea fisheries agreement, as it 

indicates a measurable displacement of yellow croaker biomass towards China. The spatio-

temporal model developed in this study is one of the first for the Yellow Sea, and it is the first 
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spatio-temporal model for the Yellow Sea that implements a spatially-varying coefficient 

model to represent the effects of an annual index, namely the PDO. Our spatio-temporal 

modeling framework will allow for investigations for other species that inhabit the Yellow 

Sea and will contribute valuable information about essential fish habitats (e.g., spawning and 

nursery grounds) and their spatial evolution, thereby supporting the development of spatial 

protection plans and other resource management measures for the Yellow Sea.  
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1. Introduction 

Detecting and understanding patterns of distribution shifts and range 

expansion/contraction for fish populations is important for effective resource management. 

This understanding can facilitate the development of adaptative and flexible monitoring 

programs that appropriately sample fish populations and, thereby, provide reliable data to 

stock and habitat assessments (Karp et al., 2019). It can also help scientists and resource 

managers anticipate potential changes in the productivity of fish stocks and marine 

ecosystems and in fisheries catches, and foresee management measures accordingly (Cheung 

et al., 2009, 2012).    

Evidence is accumulating that anthropogenic (e.g., fishing) and/or environmental (e.g., 

changes in sea temperature) stressors may have resulted in large distribution shifts in many 

marine fish populations (e.g., Blanchard et al., 2005; Perry et al., 2005; Pinsky et al., 2013). 

Most of the studies that have investigated patterns of distribution shifts have estimated 

changes in the centers of gravity (COGs) of fish populations directly from monitoring data 

(e.g., Perry et al., 2005; Dulvy et al., 2008; Pinsky et al., 2013; Engelhard et al., 2014). In 

other studies, spatio-temporal models were employed to compute northward and eastward 

COGs for understanding patterns of distribution shifts, as well as the effective area occupied 

of fish populations for understanding patterns of range expansion/contraction (e.g., Thorson et 

al., 2016a; Grüss and Thorson, 2019; Grüss et al., 2019b).  

Fishing can greatly reduce the abundance of fish populations and alter their age and 

length structure (Li et al., 2012; Bell et al., 2015) and can have profound impacts on species 

interactions (Rijnsdorp et al., 2009), often resulting in the shrinkage or displacement of the 

spatial distribution areas of fish populations (Bell et al., 2015). Several studies found that the 

spatial distribution changes caused by a decline in population abundance can, in some cases, 
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be explained by either the proportional-density model based on ideal-free distribution theory 

or the basin model based on the density-dependent habitat selection theory (MacCall, 1990; 

Petitgas et al., 1998; Fisher and Frank, 2004; Shepherd et al., 2010; Reuchlin-Hugenholtz et 

al., 2015; Thorson et al., 2016b). The basin model assumes that, as the area occupied by a fish 

population declines as a result of a decrease in population abundance, catch rate in the areas 

stills occupied by the fish populations remains high (Harley et al., 2001). The assumptions of 

the basin model are exemplified by the collapse of the northern cod (Gadus morhua) fishery 

off eastern Canada (Walters et al., 1996; Wilberg et al., 2009). Using a spatio-temporal 

model, Thorson et al. (2016b) found that the basin model explained a small, yet relatively 

important, percentage of spatial dynamics for several groundfish stocks of the eastern Bering 

Sea, Gulf of Alaska, northwest Atlantic and South Africa.  

Changes in the marine environment can take many forms, including profound alterations 

in oceanographic processes such as large fluctuations in sea temperature (Brander et al., 

2003). Many studies suggest that changes in sea temperature have a great influence on fish 

distribution shifts, by triggering latitudinal migrations out of the areas where sea temperature 

becomes suboptimal, or by greatly reducing population fitness and abundance if fishes do not 

leave the areas where environmental conditions become suboptimal (e.g., Overholtz et al., 

2011; Li et al., 2012; Cheung et al., 2013; Bell et al., 2015; Su et al., 2015). However, in a 

study focusing on the Atlantic mackerel (Scomber scombrus) population of the central 

Atlantic coast, Radlinski et al. (2013) found that the effect of sea temperature on fish spatial 

distribution varied with fish individual size and that, in some years, environmental variables 

other than sea temperature may have been the most important factors influencing distribution 

shifts. In a recent study for the eastern Bering Sea, Thorson (2019b) examined the relative 

impacts of local sea temperature and an annual oceanographic index (the cold pool index) in 

explaining the density patterns of 17 fish and invertebrate species. The authors found that 
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local sea temperature and the cold pool index jointly explained around 9-14% of the spatio-

temporal variation in density, and that the cold pool index explained spatio-temporal variation 

in density in excess of local sea temperature alone. 

The Yellow Sea is an important fishing ground located in the warm temperate zone (Fig. 

1; Liu et al, 1990). Many fish species of high socio-economic importance inhabit the Yellow 

Sea (Jin et al, 2005). Despite a large interest in understanding the spatio-temporal distribution 

patterns of fish populations of the Yellow Sea in relation to environmental stressors, very few 

studies have addressed this research issue. Many commercially important species have their 

overwintering grounds in the Yellow Sea, including the benthopelagic small yellow croaker 

(Larimichthys polyactis; hereafter referred to as “yellow croaker”). Yellow croaker is one of 

the most representative species of the Yellow Sea (Zhu, 1963; Liu et al, 1990; Jin et al, 2005). 

From 2001 to 2016, China's catch of yellow croaker in the Yellow and Bohai Seas has been 

increasing, reaching 27 million tons in 2016 (Bureau of Fisheries and Fishery Administration 

of Ministry of Agriculture, China, pers. comm.). Yellow croaker spawns in the coastal waters 

of China, but undertakes post-spawning migrations to regions of the Yellow Sea where it is 

also caught by South Korean fishing fleets (Jin et al., 2015). There is a critical need to better 

understand the spatial distribution and migration patterns of yellow croaker, the changes in 

these patterns through time, and how these patterns may respond to changes in environmental 

stressors, to help the formulation of resource management measures for the species.   

Yellow croaker is an economically important migratory benthopelagic fish of the Bohai, 

Yellow and East China Seas and the western bank of the Korean Peninsula (Zhu, 1963). 

Yellow croaker has long been targeted by Chinese, South Korean and Japanese fishing vessels 

in the above-mentioned marine regions (Zhu, 1963). The yellow croaker population is mainly 

divided into a northern Yellow Sea-Bohai Sea stock, a southern Yellow Sea stock, and an 

Eastern China Sea stock (Liu et al, 1990). In the present study we analyze data for a survey 
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conducted in the middle and southern Yellow Sea during winter months; the area covered 

represents the main overwintering grounds of the northern Yellow Sea-Bohai and southern 

Yellow Sea stocks of yellow croaker (Liu et al, 1990; Jin et al, 2005). We refer to this area 

simply as the “Yellow Sea” in the remainder of the present paper. The overwintering grounds 

of yellow croaker in the Yellow Sea are included in those waters that are governed by the 

China-South Korea fisheries agreement. The fishing grounds of some of the Chinese fisheries 

that operate in the Yellow Sea have contracted due to the signing of this fisheries agreement. 

This situation has reduced the areas that Chinese fishers can fish and the amount of fish they 

can catch (Jin et al., 2015). The China-South Korea fisheries agreement stipulates that China 

is responsible for fisheries management in the western part of the Yellow Sea, and South 

Korea in the eastern part. Each contracting party is responsible for determining each year the 

allowable fishing species, fishing quota, operating time, operating area and other operating 

conditions of the national and foreign fishing vessels in its exclusive economic zone, and it 

needs to inform the other contracting party. Understanding patterns of distribution shifts and 

range expansion/contraction for yellow croaker in their overwintering grounds of the Yellow 

Sea may provide valuable information for effective resource management in the context of the 

China-South Korea fisheries agreement. 

In the present study, we fit a delta-Gamma spatio-temporal model to bottom trawl survey 

biomass catch rate data for the yellow croaker population of the Yellow Sea to understand the 

patterns of distribution shifts and range expansion/contraction of the fish population over the 

period 2001-2017. We employed a spatio-temporal model rather than calculating COGs 

directly from monitoring data, as spatio-temporal models account for spatio-temporal changes 

in survey design and effort and can therefore account for random or systematic variation in 

sampling design when calculating changes in fish spatial distributions (Thorson et al., 2016a). 

First, we developed four alternative spatio-temporal models for the yellow croaker population 
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of the Yellow Sea, formed from a factorial cross of including or ignoring the quadratic effect 

of local surface temperature, as well as a spatially varying effect of the Pacific Decadal 

Oscillation (PDO; an annual oceanographic index), and we identified the most parsimonious 

of these four models based on Akaike’s Information Criterion (AIC). We used the estimates 

of the four alternative delta-Gamma spatio-temporal models to determine the relative 

importance of sea temperature and the PDO in explaining spatio-temporal patterns of 

probability of encounter (predicted by the binomial component of the delta-Gamma model) 

and positive density (predicted by the Gamma component of the delta-Gamma model). Next, 

we employed the AIC-selected delta-Gamma spatio-temporal model to examine trends in the 

northward and eastwards COGs and effective area occupied of the yellow croaker population 

of the Yellow Sea, so as to understand patterns of distribution shifts and range 

expansion/contraction for the fish population. Our study uses the spatially-varying coefficient 

(SVC) model developed in Thorson (2019b) to represent the effects of an annual index 

(namely the PDO) in the spatio-temporal model of yellow croaker. This is the first time that a 

spatio-temporal model using the SVC model has been developed for the Yellow Sea.  

 

2. Material and methods 

2.1. Data used in this study  

In this study, we used the yellow croaker biomass catch rate data (kg.km-²) that were 

collected by the fixed-station bottom trawl surveys that were conducted in the Yellow Sea in 

the winter (January) of 2001–2011 and 2015–2017 by the Yellow Sea Fisheries Research 

Institute of the Chinese Academy of Fishery Sciences (Fig. 1). The research vessel "Bei Dou" 

(56.2-m length, 12.5-m width, 5.1-m draft, 1,165 tons and 2,250 horsepower) was employed 

for the surveys. Sampling consisted of 1-hour tows at a speed of 3 knots using a standard 

bottom trawl with 83.2 m long nets, with a 20 cm mesh, a 24 mm cod-end mesh size, and a 
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mouth circumference of 167.2 m. After the tows were carried out, all fishes and invertebrates 

were identified to species or the lowest taxonomic level possible, and abundance, biomass and 

biological information were then recorded for each species/taxon.  

We also included sea surface temperature (SST) data for the period 2001-2017 in this 

study. Monthly 4 km × 4 km SST composites for January of 2001-2017 for the study area 

were downloaded from a National Aeronautics and Space Administration (NASA) database 

(http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/). Remotely-sensed SST data were employed in 

this study, because the winter bottom trawl surveys that are conducted in the Yellow Sea do 

not collect any temperature data or any other environmental data. In the Yellow Sea, during 

the winter season, when sea temperature cools down and ocean waters mix vertically, the 

temperature in the water column becomes relatively uniform, so that it is reasonable to use 

SST as a proxy for the temperature of any layer of the water column, including the sea bottom 

(Jin et al., 2005; Radlinski et al., 2013). Therefore, even though yellow croaker is a 

benthopelagic species, it is reasonable to assume that SST has a potential relationship to its 

spatial distribution and density patterns during the winter season.   

Finally, PDO for the period 2001-2017 were utilized in the present study. PDO 

estimates for 2001-2017 for the study area were downloaded from 

http://research.jisao.washington.edu/pdo/. We downloaded PDO estimates for December-

February, from which we calculated a mean PDO value for the winter of each year of the 

period 2001-2017. The PDO summarizes annual variation in the location of warm waters in 

the North Pacific, and is the main mode of variability at a decadal time scale in the Pacific 

Ocean (Tian et al., 2004).  

 

2.2. Spatio-temporal modeling 
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We developed four alternative delta-Gamma spatio-temporal models for the yellow 

croaker population of the Yellow Sea that included the effects of SST and/or the PDO or none 

of these effects, and we identified the most parsimonious of these four models based on AIC 

(Akaike, 1974). These spatio-temporal models were spatio-temporal generalized linear mixed 

models (GLMMs) that accounted for spatial and spatio-temporal structure at a fine scale, 

which were fitted to the yellow croaker biomass catch rate data collected during winter 

bottom trawl surveys. Specifically, we fitted the following four spatio-temporal models, 

which included up to 2 covariates: (1) M1: a model with no covariates; (2) M2: a model 

including the quadratic effect of SST, representing a dome-shaped response to local 

temperatures; (3) M3: a model including the spatially-varying effect of the PDO represented 

using an SVC model (Thorson, 2019b); and (4) M4: a model including the quadratic effect of 

SST and the spatially-varying effect of PDO (represented using an SVC model).  

We relied on delta-Gamma GLMMs, because the yellow croaker biomass catch rate data 

that we employed in this study included many zeros (Thorson et al., 2015). In other words, we 

first fitted a binomial GLMM to encounter/non-encounter data for yellow croaker, then fitted 

a gamma GLMM to positive biomass catch rate data, and finally multiplied the predictions of 

the binomial and Gamma GLMMs to obtain final biomass-density estimates for yellow 

croaker (Lo et al., 1992; Grüss et al., 2019b). The spatio-temporal delta-Gamma GLMMs 

were implemented using R package “VAST” (Thorson, 2019a), which is publicly available 

online (https://github.com/James-Thorson-NOAA/VAST). We employed the spatio-temporal 

delta-Gamma not only to estimate spatio-temporal patterns of biomass-density for yellow 

croaker, but also to understand how the northward and eastward COGs and effective area 

occupied of the yellow croaker population may have changed over the period 2001-2017, as 

described in detail below. In the following, we describe the implementation of model M4 
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which includes the quadratic effect of SST and the spatially-varying effects of the PDO; the 

implementation of models M1-M3 is similar.  

Yellow croaker probability of encounter 𝑝𝑝𝑖𝑖 at site (sampling station) 𝑠𝑠(𝑖𝑖) was 

estimated by the binomial GLMM with a logit link function and linear predictors, including a 

Gaussian Markov random field representing spatial variation in probability of encounter and 

another Gaussian Markov random field representing spatio-temporal variation in probability 

of encounter:  

𝑝𝑝 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙−1 �𝛽𝛽(𝑝𝑝) + 𝜔𝜔(𝑝𝑝) + 𝜀𝜀(𝑝𝑝) + 𝛾𝛾(𝑝𝑝) (𝑝𝑝) (𝑝𝑝) 2(𝑝𝑝) (𝑝𝑝)  
𝑖𝑖 𝑡𝑡(𝑖𝑖) 𝑠𝑠(𝑖𝑖) 𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) 𝑡𝑡(𝑖𝑖),1𝑇𝑇𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) + 𝛾𝛾𝑡𝑡(𝑖𝑖),2𝑇𝑇𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) + 𝜉𝜉𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖)� 

(1)  
where 𝛽𝛽(𝑝𝑝)

𝑡𝑡(𝑖𝑖) is the intercept for year 𝑙𝑙(𝑖𝑖) in which sample i was collected; 𝜔𝜔(𝑝𝑝)
𝑠𝑠(𝑖𝑖) is the spatially 

correlated variability in probability of encounter at the site 𝑠𝑠(𝑖𝑖) where sample i was collected; 

𝜀𝜀(𝑝𝑝)
𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) is the spatially correlated variability in probability of encounter at site 𝑠𝑠(𝑖𝑖) in year 

𝑙𝑙(𝑖𝑖); 𝛾𝛾(𝑝𝑝) (𝑝𝑝)
𝑡𝑡(𝑖𝑖),1𝑇𝑇𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) is the linear effect of SST on probability of encounter at site 𝑠𝑠(𝑖𝑖) in year 

𝑙𝑙(𝑖𝑖); 𝛾𝛾(𝑝𝑝) (𝑝𝑝)
𝑡𝑡(𝑖𝑖),2𝑇𝑇

2
𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) is the quadratic effect of SST on probability of encounter at site 𝑠𝑠(𝑖𝑖) in 

year 𝑙𝑙(𝑖𝑖); and 𝜉𝜉(𝑝𝑝)
𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) is the spatially-varying effect of the PDO on probability of encounter at 

site 𝑠𝑠(𝑖𝑖) in year 𝑙𝑙(𝑖𝑖). Both the T and T² covariates were standardized to have a mean of zero 

and a variance of one prior to being used in the spatio-temporal models; this transformation 

implied that 𝛾𝛾(𝑝𝑝)𝑇𝑇(𝑝𝑝) and 𝛾𝛾(𝑝𝑝)
1 2 𝑇𝑇²(𝑝𝑝) (i.e., T and T² times their coefficient) had a standard 

deviation equal to 𝛾𝛾(𝑝𝑝) and 𝛾𝛾(𝑝𝑝)
1 2 , respectively (Thorson, 2015; Grüss et al. 2020).  

The intercept and the linear and quadratic effects of SST are fixed effects. On the other 

hand, the spatial term, 𝜔𝜔(𝑝𝑝), the spatio-temporal terms, 𝜀𝜀(𝑝𝑝)
𝑡𝑡 , and the spatially-varying effect 

of the PDO, 𝜉𝜉(𝑝𝑝)
𝑡𝑡 , are random effects and are assumed to follow a multivariate normal 

distribution and, in the case of the spatio-temporal terms, temporal variation is assumed to 

follow a random-walk process in time: 
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𝜔𝜔(𝑝𝑝)~𝑀𝑀𝑀𝑀𝑀𝑀 �𝟎𝟎,𝜎𝜎2 𝑹𝑹(𝜅𝜅)�  
𝑝𝑝𝑝𝑝

(2) 
𝜀𝜀(𝑝𝑝)
𝑡𝑡 ~𝑀𝑀𝑀𝑀𝑀𝑀 �𝜀𝜀(𝑝𝑝)

𝑡𝑡−1,𝜎𝜎2𝑝𝑝𝑝𝑝𝑹𝑹(𝜅𝜅)� 

𝜉𝜉(𝑝𝑝)
𝑡𝑡 ~𝑀𝑀𝑀𝑀𝑀𝑀�𝟎𝟎,𝜎𝜎2𝑝𝑝𝑝𝑝𝜃𝜃𝑠𝑠𝑃𝑃𝑡𝑡� 

where 𝑹𝑹(𝜅𝜅) is the correlation among locations as a function of decorrelation distance 𝜅𝜅; 𝜎𝜎2𝑝𝑝𝑝𝑝 

is the estimated pointwise variance of the spatial variation in probability of encounter; 𝜎𝜎2𝑝𝑝𝑝𝑝 is 

the estimated pointwise variance of the spatio-temporal variation in probability of encounter; 

𝑃𝑃𝑡𝑡 is the PDO and 𝜃𝜃𝑠𝑠𝑃𝑃𝑡𝑡 is the PDO effect; and 𝜎𝜎2𝑝𝑝𝑝𝑝  is the estimated pointwise variance of the 

PDO effect. The 𝑹𝑹 terms are calculated from a Matérn function that take geometric anisotropy 

(the fact that autocorrelation between locations may vary with both distance and direction) 

into account (Thorson et al., 2015). Following Thorson et al. (2016a), we chose to use a 

random-walk temporal process rather than an autoregressive process to estimate the spatio-

temporal term, so as to ensure that sites and/or time intervals without sampling do not exhibit 

mean-reversion, which could otherwise shrink COG estimates for undersampled time periods 

towards the average COG for better sampled periods.   

Similarly, yellow croaker positive biomass catch rate 𝑟𝑟𝑖𝑖 at site 𝑠𝑠(𝑖𝑖) was estimated by the 

Gamma GLMM with a log link function and linear predictors, including a Gaussian Markov 

random field representing spatial variation in positive catch rate and another Gaussian 

Markov random field representing spatio-temporal variation in positive catch rate: 

𝑟𝑟 = 𝑒𝑒𝑒𝑒𝑝𝑝 �𝛽𝛽(𝑟𝑟) + 𝜔𝜔(𝑟𝑟) (𝑟𝑟) (𝑟𝑟) (𝑟𝑟) (𝑟𝑟) 2(𝑟𝑟) (𝑟𝑟)  
𝑖𝑖 𝑡𝑡(𝑖𝑖) 𝑠𝑠(𝑖𝑖) + 𝜀𝜀𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) + +𝛾𝛾𝑡𝑡(𝑖𝑖),1𝑇𝑇𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) + 𝛾𝛾𝑡𝑡(𝑖𝑖),2𝑇𝑇𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖) + 𝜉𝜉𝑠𝑠(𝑖𝑖),𝑡𝑡(𝑖𝑖)� 

(3) 

where the parameters on the right side of Eq. (3) have the same meaning and characteristics as 

the parameters on the right side of Eq. (1), except that they apply to log-catch rate.  

 For computational efficiency, we specified 100 “knots” (𝑛𝑛𝑗𝑗 = 100) to approximate all 

the spatial and spatio-temporal variation terms over a fixed spatial domain Ω, such that the 
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value of each spatial or spatio-temporal variation term is tracked at each knot (Shelton et al., 

2014). The 100 knots were uniformly distributed over a 15′ × 15′ (arc-minutes) prediction grid 

developed for the present study (Fig. 2). The values of all spatial and spatio-temporal 

variation terms are tracked at each knot by the spatio-temporal model, and the value of a 

spatial or spatio-temporal variation term at a given location is interpolated from the value of 

three knots surrounding that location (see Grüss et al. (2020) for more details about the 

procedure). After knots have been determined, the location of the 100 knots is held fixed 

when the parameters of the GLMMs are estimated. One hundred knots offered a good 

compromise between accuracy and computational speed; we confirmed that parameter 

estimates and GLMM predictions were qualitatively similar when the number of knots was 

increased.    

After the binomial and gamma GLMMs were fitted, we mapped yellow croaker 

biomass-density in the Yellow Sea, using the 15′ × 15′ prediction grid developed for the 

present study. Next, we estimated the biomass of the yellow croaker population in year t, 𝐵𝐵�𝑡𝑡, 

as:  

𝑛𝑛𝑗𝑗  
𝐵𝐵�𝑡𝑡 = �𝐴𝐴𝑗𝑗𝑝𝑝𝑗𝑗,𝑡𝑡𝑟𝑟𝑗𝑗,𝑡𝑡 

𝑗𝑗=1 (4) 

𝑛𝑛𝑗𝑗

= �𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙−1��̂�𝛽(𝑝𝑝) + 𝜀𝜀(𝑝𝑝) + 𝜔𝜔�(𝑝𝑝) + 𝛾𝛾�(𝑝𝑝)𝑇𝑇(𝑝𝑝) + 𝛾𝛾�(𝑝𝑝)𝑇𝑇2(𝑝𝑝) ̂(𝑝𝑝) ̂(𝑟𝑟)
𝑗𝑗 𝑡𝑡 𝑗𝑗,𝑡𝑡 𝑗𝑗 𝑡𝑡,1 𝑗𝑗,𝑡𝑡 𝑡𝑡,2 𝑗𝑗,𝑡𝑡 + 𝜉𝜉𝑗𝑗,𝑡𝑡 �𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑡𝑡

𝑗𝑗=1

+ 𝜀𝜀(𝑟𝑟)
𝑡𝑡 + 𝜔𝜔�(𝑟𝑟)

𝑗𝑗 + 𝛾𝛾�(𝑟𝑟)
𝑡𝑡,1 𝑇𝑇

(𝑟𝑟)
𝑗𝑗, 𝑗𝑗,𝑡𝑡 + 𝛾𝛾�(𝑟𝑟)𝑇𝑇2(𝑟𝑟) ̂

2 𝑗𝑗,𝑡𝑡 + 𝜉𝜉(𝑟𝑟)
𝑡𝑡, 𝑗𝑗,𝑡𝑡 � 

 

where 𝐴𝐴  is the surface area of knot j (in km²); �̂�𝛽(𝑝𝑝)
𝑗𝑗 𝑡𝑡 , 𝛾𝛾�(𝑝𝑝), 𝛾𝛾�(𝑝𝑝)

𝑡𝑡,1 𝑡𝑡,2 , �̂�𝛽(𝑟𝑟)
𝑡𝑡 , 𝛾𝛾�(𝑟𝑟) (𝑟𝑟)

𝑡𝑡,1 , and 𝛾𝛾�𝑡𝑡,2  are fixed 

effects estimated through maximum likelihood estimation; and 𝜀𝜀(𝑝𝑝), 𝜔𝜔�(𝑝𝑝), 𝜉𝜉(𝑝𝑝)
𝑗𝑗,𝑡𝑡 𝑗𝑗 𝑗𝑗,𝑡𝑡 , 𝜀𝜀(𝑟𝑟)

𝑗𝑗,𝑡𝑡 , 𝜔𝜔�(𝑟𝑟)
𝑗𝑗 , and 
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𝜉𝜉(𝑟𝑟)
𝑗𝑗,𝑡𝑡  are random effects set to the value that maximizes the joint likelihood conditional on the 

estimated value of fixed effects (Thorson et al., 2015).  

To understand patterns of distribution shifts for the yellow croaker population, we also 

estimated its eastward and northward COGs in each year of the period 2001-2017 with the 

spatio-temporal model. The eastward COG of yellow croaker in year t, 𝑋𝑋𝑡𝑡, is given by 

(Thorson et al., 2016a; Thorson and Barnett, 2017): 

𝑛𝑛𝑗𝑗  𝐴𝐴 𝑟𝑟
𝑋𝑋 𝑗𝑗𝑝𝑝
𝑡𝑡 = �𝑒𝑒 𝑗𝑗,𝑡𝑡 𝑗𝑗,𝑡𝑡

𝑗𝑗  
𝐵𝐵�𝑡𝑡𝑗𝑗=1 (5) 

 

where 𝑒𝑒𝑗𝑗 is the value of eastings (in km) in knot j. The northward COG of yellow croaker in 

year t , 𝑌𝑌𝑡𝑡, is given in a similar way, except that 𝑒𝑒𝑗𝑗 is replaced with 𝑦𝑦𝑗𝑗, the value of northings 

(in km) in knot j, in Eq. (5).  

Moreover, to understand patterns of range expansion/contraction for the yellow croaker 

population, we also estimated its effective area occupied in each year of the period 2001-2017 

with the spatio-temporal model. Effective area occupied in year t is given by the ratio of 

estimated biomass in year t, 𝐵𝐵�𝑡𝑡 (given by Eq. (4)) over average biomass-density in year t, 𝐷𝐷𝑡𝑡, 

which is given by (Thorson et al., 2016a): 

𝑛𝑛𝑗𝑗  𝐴𝐴 𝑝𝑝
𝐷𝐷 𝑗𝑗 𝑗𝑗,𝑡𝑡𝑟𝑟𝑗𝑗,𝑡𝑡
𝑡𝑡 = �𝑝𝑝𝑗𝑗,𝑡𝑡𝑟𝑟𝑗𝑗,𝑡𝑡  

𝐵𝐵�𝑡𝑡𝑗𝑗=1 (6) 

With regard to model parameter estimation, the estimation of fixed effects was 

accomplished by identifying the parameter values maximizing the marginal log-likelihood. 

First, the Laplace approximation implemented by R package “TMB” (Kristensen et al., 2016) 

was used to calculate the marginal log-likelihood via an approximation of the integral across 

all random effects. By using automatic differentiation, TMB efficiently calculates the matrix 

of second derivatives (which is employed by Laplace approximation), as well as the gradient 
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of the Laplace approximation (which is employed when maximizing the fixed effects). 

Through the maximization of the marginal log-likelihood given the maximum likelihood 

estimates of the fixed effects, TMB predicts all random effects. Additionally, for 

computational efficiency, the probability of the random effects was approximated using the 

stochastic partial differential equation method (Lindgren et al., 2011). The bias-correction 

estimator developed in Thorson and Kristensen (2016) was utilized to correct for the 

“retransformation bias” when any derived quantity involving a non-linear transformation of 

random effects is predicted. Finally, the generalized delta method implemented in TMB was 

employed to compute the standard errors of all fixed and random effects, as well as the 

standard errors of derived quantities (Kass and Steffey, 1989). We confirmed that the spatio-

temporal model is converged by checking that the gradient of the marginal log-likelihood was 

less than 0.0001 for all fixed effects, and that the Hessian matrix of second derivatives of the 

negative log-likelihood was positive definite.   

 

2.3. Analysis of the relative importance of SST and the PDO in explaining patterns of 

probability of encounter and positive density 

We took advantage of fitting four alternative spatio-temporal models (that included the 

effects of SST and/or the PDO or none of these effects) to understand the relative importance 

of SST and the PDO in explaining patterns of probability of encounter and positive density for 

the yellow croaker population of the Yellow Sea. For this analysis, we implemented the 

method used in Thorson (2015). Briefly, this method consists of comparing the estimated 

variances of the spatio-temporal variations in probability of encounter and positive density for 

the four alternative spatio-temporal models, so as to determine whether the inclusion of the 

effects of SST and/or the PDO in a model leads to some reduction of the variances (Thorson, 

2015). Here, what is meant by spatio-temporal variation is the sum of the spatial variation 
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term 𝜔𝜔(𝑝𝑝) or 𝜔𝜔(𝑟𝑟) and of the spatio-temporal variation terms 𝜀𝜀(𝑝𝑝)
𝑡𝑡  or 𝜀𝜀(𝑟𝑟)

𝑡𝑡 . This spatio-temporal 

variation represents unmeasured (latent) variation in probability of encounter or positive 

density, and the desired goal of including covariates in a spatio-temporal model is to reduce 

this residual spatio-temporal variation as much as possible (Thorson et al., 2015).  

 

2.4. Trend analysis of SST and PDO time series 

To facilitate the interpretation of the predictions of the spatio-temporal model, we also 

conducted a trend analysis of SST and PDO time series. We used the regime shift detection 

method based on sequential t-test (Rodionov, 2004, 2006; Rodionov and Overland, 2005) to 

analyze trends in the SST and PDO environmental time series in the Yellow Sea over the 

period 2001-2017. The regime shift detection method based on sequential t-test was 

developed by Rodionov (2004) to detect possible regime shifts. As some of the environmental 

indices considered in this study may exhibit temporal autocorrelation, all environmental time 

series were processed with "pre-whitening" (Rodionov, 2004, 2006) before the regime shift 

detection method based on sequential t-test was implemented. The regime shift detection 

method based on sequential t-test is coded in Visual Basic and can be applied in Excel.  

 

3. Results  

3.1. Analysis of the relative importance of SST and the PDO in explaining patterns of 

probability of encounter and positive density 

 We initially developed four alternative spatio-temporal models for the yellow croaker 

population of the Yellow Sea (M1-M4), which included the effects of SST and/or the PDO or 

none of these effects. These developments allowed us to determine the relative importance of 

SST and the PDO in explaining patterns of probability of encounter and positive density for 

the yellow croaker population of the Yellow Sea. We found that SST was much more 
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important than the PDO in explaining patterns of probability of encounter (Table 1). Including 

SST in the spatio-temporal model led to a moderate reduction in the variance of spatio-

temporal variation in probability of encounter, while including the PDO in the model led to a 

negligible reduction in the variance of spatio-temporal variation in probability of encounter. 

Moreover, we found that the PDO was more important than SST in explaining patterns of 

positive density (Table 1). Including the PDO in the spatio-temporal model resulted in a 

moderate decrease in the variance of spatio-temporal variation in positive density, while 

including SST in model led to a small increase in the variance of spatio-temporal variation in 

positive density.  

 The spatio-temporal model with no covariates (M1) had the lowest AIC (Table 2). 

Therefore, model M1 was selected for all subsequent analyses. We note, however, that the 

spatial distribution patterns, northward and eastward COGs and effective areas occupied 

predicted by models M1-M4 were very similar.  

 

3.2. Patterns of spatial distribution, distribution shift and range expansion/contraction of 

yellow croaker in the Yellow Sea 

The AIC-selected model (i.e., model M1 that did not include any covariates) predicted 

that, over the period 2001-2017, the highest biomass-densities of yellow croaker were found 

in the central area of the Yellow Sea (33°75′-36°00′N, 123°15′-124°75′E; Fig. 3). Other 

predicted hotspots (i.e., highest biomass-density hotspots) for yellow croaker included the 

north (36°00′-37°37.5′N, 123°15′-124°15′E) and southeast (32°00′-33°75′N, 124°00′-

125°15′E) areas of the Yellow Sea. The spatio-temporal model also predicted that yellow 

croaker biomass declined markedly between 2001 and 2017, which resulted in large changes 

in the spatial distribution of yellow croaker in their overwintering grounds over the entire 

study period (Fig. 3). Since 2003, the biomass-density of yellow croaker has shown a 
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significant decrease throughout the Yellow Sea, and this decrease has been accompanied by a 

shrinkage in high-density areas (Figs. 3 and 4). This shrinkage has been more pronounced in 

the north and southeast areas than in the central area of the Yellow Sea. Decreases in density 

in the southeast area was stronger after 2009/2010 than between 2001 and 2009. In 2017, the 

central area of the Yellow Sea remained the only density hotspot for yellow croaker (Fig. 4).  

The eastward and northward COGs estimated by the AIC-selected spatio-temporal model 

suggest that the COG of yellow croaker moved north and west between 2001 and 2010, and 

then south and west over the period 2010-2017 (Fig. 5). Changes in the eastward COG of 

yellow croaker between 2001 and 2017 (i.e., the large displacement of the eastward COG of 

the species towards the west of the Yellow Sea) were found to be significant (p = 0.038, using 

a two-sided Wald test for all significance testing of changes). By contrast, changes in the 

northward COG of yellow croaker between 2001 and 2017 were not found to be significant (p 

> 0.05).  

The effective area occupied estimated by the AIC-selected spatio-temporal model 

suggests a range expansion for yellow croaker over the study period (Fig. 6). However, 

changes in effective area occupied between 2001 and 2017 were not found to be significant (p 

> 0.05).  

 

3.3. Trend analysis of SST and PDO time series 

SST anomalies in the Yellow Sea were found to slightly increase between 2001 and 

2008, markedly decline between 2008 and 2011, and largely increase between 2011 and 2017 

(Fig. 7). The trend analysis of the SST time series suggested an absence of regime shifts in 

SST over the period 2001-2017. The trend analysis of the PDO time series suggested that a 

regime shift in the PDO occurred in 2013/2014 (Fig. 8). From 2001 to 2009/2010, the 

cumulative sum of the anomaly of the PDO was usually positive. In or around 2009/2010, the 
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cumulative sum of the anomaly of the PDO changed from positive to negative (Fig. 8), which 

mirrored the switch from a southward to a northward shift in the northward COG of yellow 

croaker in 2009.  

 

4. Discussion 

In this study, we developed a delta-Gamma spatio-temporal model for the yellow croaker 

population of the Yellow Sea for the period 2001-2017. This model is one of the first spatio-

temporal models for the Yellow Sea (along with Guan et al. (2019)) and the first spatio-

temporal model for the Yellow Sea that implements an SVC model to represent the effects of 

an annual index (the PDO). The main characteristic of spatio-temporal models is the 

representation of spatial autocorrelation (spatial structure) to account for the fact that state 

variables (e.g., probability of encounter, catch rate) at given locations are more similar to state 

variables at nearby locations than to state variables at more distant locations. This spatial 

autocorrelation is modeled via spatial variation terms that represent spatial variation that is 

stable over time and spatio-temporal variation terms that represent spatial variation that 

changes between years (Grüss et al., 2017; Thorson, 2019a). The representation of spatial and 

spatio-temporal variation in spatio-temporal models results in more precise statistical 

inference and, therefore, in the delivery of more reliable scientific advice to stock and habitat 

assessments and resource management (Thorson et al., 2015).   

Spatio-temporal models can also include covariates to improve the percentage of 

variability in the data explained by the spatio-temporal model (e.g., SST and the PDO in this 

study), or to take into account nuisance parameters (in the case of “catchability covariates”; 

Thorson, 2015; Grüss et al., 2020). By including the effects of SST and the PDO in the delta-

Gamma spatio-temporal model of yellow croaker, we were expecting to explain as much of 

the spatial and spatio-temporal variations (i.e., unmeasured variations) in probability of 
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encounter and positive density as possible (Thorson et al., 2015). However, model selection 

based on AIC suggested that a model with no covariates was most parsimonious. In other 

words, our results suggested that neither local SST and or the regional PDO index explains a 

meaningful percentage of variability in the data and that, therefore, their inclusion in the 

delta-Gamma spatio-temporal model of the yellow croaker population of the Yellow Sea is 

not warranted. This result was not expected a priori, as previous studies for the eastern Bering 

Sea (Thorson, 2019b; Grüss et al., 2020) found that including sea temperature and an annual 

oceanographic index (the cold pool) using an SVC model led to more parsimonious spatio-

temporal models capable of better describing the modeled system. We suspect that this is due 

to the fact that environmental variations are much more pronounced in the eastern Bering than 

in the Yellow Sea. Environmental variations are also less pronounced in the great majority of 

the world’s marine regions than in the eastern Bering Sea, and the representation of spatial 

and spatio-temporal structure at a fine spatial scale in spatio-temporal models accounts for a 

large proportion of the variability in the data (Thorson et al., 2015). Therefore, we suspect that 

there are many regional case studies where the inclusion of environmental covariates and/or 

annual oceanographic indices in spatio-temporal models will not be warranted to describe the 

modeled system. We recommend that future studies examine this issue in several contrasted 

(e.g., polar, temperate and tropical) marine regions to determine if it can be generalized.  

We employed the AIC-selected spatio-temporal model (i.e., the model with no 

covariates) to understand the spatial distribution patterns of yellow croaker in their 

overwintering grounds of the Yellow Sea over the period 2001-2017. The AIC-selected 

spatio-temporal model suggested the existence of three biomass-density hotspots (i.e., highest 

biomass-density areas) for yellow croaker in the Yellow Sea between 2001 and 2017: the 

central area of the Yellow Sea, where yellow croaker density is highest, and the north and 

southeast areas of the Yellow Sea. These predictions of the spatio-temporal model for the 
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period 2001-2017 concur with insights from a previous study that analyzed data from the 

1980s (Liu et al., 1990). The analyses of Liu et al. (1990) also suggested the existence of three 

main overwintering grounds for yellow croaker in the Yellow Sea, specifically: (1) a northern 

region of the Yellow Sea located in the Chengshantou area and west of 124°00′E (Northern 

Yellow Sea-Bohai Sea stock); (2) a north-central region located 34°00′N-35°00′N, 123°45′E-

125°00′E (Northern Yellow Sea-Bohai Sea and Central Yellow Sea stocks); and (3) a 

southern region located 32°00′N-34°00′N, 123°45′E-126°00′E (Southern Yellow Sea stock). 

The zone of the Yellow Sea where the three overwintering grounds identified in Liu et al. 

(1990) are connected is the central area of the Yellow Sea identified as the highest-density 

area for yellow croaker in the present study. The overwintering grounds of yellow croaker are 

important for the replenishment of the yellow croaker population, as they concentrate a large 

fraction of yellow croaker adults for a fraction of the year (Jin et al., 2005). Therefore, the 

present study provides important scientific information for spatial protection efforts that seek 

to preserve a fraction of yellow croaker adults to maintain its yellow croaker recruitment at 

reasonable levels. 

We also used the AIC-selected spatio-temporal model to detect and understand patterns 

of distribution shifts and range/expansion for the yellow croaker population of the Yellow Sea 

over the period 2001-2017. Specifically, we employed the AIC-selected spatio-temporal 

model to estimate changes in the eastward and northward COGs and effective area occupied 

of the yellow croaker population. This analysis mainly suggested a statistically significant 

displacement of the eastward COG of yellow croaker to the west of the Yellow Sea, which 

reflected the progressive disappearance of yellow croaker density hotspots in the north and 

southeast areas of the Yellow Sea that resulted in the central area of the Yellow Sea becoming 

the only yellow croaker density hotspot in 2017. This finding concurs with the basin model 

theory, which suggests that, as the biomass of a fish population declines, biomass-density 
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becomes concentrated where habitat is most suitable (MacCall, 1990). This finding has 

important implications for fisheries management in the context of the China-South Korea 

fisheries agreement, as it indicates a measurable displacement of yellow croaker biomass 

towards China.  

 Although model selection based on AIC suggested that the inclusion of SST in the 

spatio-temporal model of yellow croaker was not warranted, we found that SST may explain a 

moderate fraction of spatio-temporal variability in yellow croaker probability of encounter 

(Table 1). This result concurs with the findings of previous studies that changes in sea 

temperature may affect the spatial distribution patterns of yellow croaker in the Yellow and 

Bohai Seas (Liu et al., 1990; Li et al., 2009; Lin et al., 2011; Chen et al., 2017; Liu et al., 

2017). Specifically, during the winter season, yellow croaker from the Bohai Sea and the 

Yellow Sea coasts migrate to the wintering grounds of the Yellow Sea where high- and low-

salinity waters converge and warm currents allow for temperatures that are suitable for 

wintering (Li et al., 2009; Lin et al., 2011; Chen et al., 2017; Liu et al., 2017). Previous 

studies found that the Yellow Sea wintering grounds of yellow croaker were centered at 

124°E prior to the 1980s, and that their location and extent were then probably affected by 

changes in sea environmental conditions (Liu et al., 1990).  

While model selection based on AIC suggested that the inclusion of the PDO in the 

spatio-temporal model of yellow croaker was not warranted, we found that the PDO may 

explain a moderate fraction of spatio-temporal variability in the positive density of yellow 

croaker (Table 1). Further, the trend analysis of PDO time series suggested that, in 2009/2010, 

the cumulative sum of the anomaly of the PDO changed from positive to negative, while our 

spatio-temporal model suggested that the COG of yellow croaker started shifting northwest in 

2009 after having shifted southwest between 2001 and 2008 (although changes in the 

northward COG of yellow croaker between 2001 and 2017 were not found to be statistically 
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significant). Finally, the spatio-temporal model predicted that the declines in yellow croaker 

density that occurred in the southeast area of the Yellow Sea were stronger between 

2009/2010 and 2017 than between 2001 and 2009. Therefore, we conclude that changes in the 

PDO towards the end of the study period (switching from a positive to a negative phase) may 

have synergistically interacted with biomass declines in making the yellow croaker density 

hotspot of the southeast area of the Yellow Sea disappear. This result shows the potential, 

although moderate, for large-scale oceanographic events in the Pacific to contribute to fish 

distribution shifts in the Yellow Sea. This kind of information is important for resource 

managers, as it offers them the possibility to anticipate potential distribution shifts in response 

to changes in large-scale oceanographic indices, and to craft management measures 

accordingly (Karp et al., 2019).  

Fishing pressure can also contribute to patterns of distribution shifts and range 

expansion/contraction in fish populations (Bell et al., 2015). In particular, fishing pressure 

was identified as a primary driving force behind distribution shifts in the Yellow and Bohai 

Seas in some previous studies (Xu et al., 2003; Wang et al., 2012; Lin et al., 2016). For this 

reason, we initially fitted spatio-temporal models that also included the effect of fishing 

power (a proxy for fishing pressure), which was modeled as an annual index using the SVC 

model (Results not shown). However, we found that fishing pressure had virtually no effect 

on the probability of encounter and positive density of yellow croaker in the Yellow Sea. We 

were not expecting this result a priori, as Xu et al, (2003) and Li (2011) both reported that 

fishing pressure is unevenly distributed in the Yellow Sea, and is higher in the central and 

southern parts of the Yellow Sea than in the northern Yellow Sea. Li (2011) also found that 

the density of yellow croaker was lower in the southern than in the northern Yellow Sea over 

the period 1999-2010, due to the differing spatial patterns of fishing pressure in the northern 

and southern Yellow Sea and also, to a lesser extent, to the increase in SST that occurred in 
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the southern Yellow Sea between 1999 and 2010. Li (2011)’s findings may explain why our 

spatio-temporal model predicted that the effective area occupied of yellow croaker slightly 

contracted along the north-south axis with a small displacement of its southern population 

boundary to the north (Fig. 4). Fishing power (specifically the logarithm of the mean power of 

the fishing boats from the four northern provinces of China and the city of Tianjing) was the 

only fishing pressure indicator available to us, but may be far from the best way to describe 

fishing pressure in a spatio-temporal model. Therefore, we recommend that future studies 

obtain more meaningful indicators of fishing pressure to re-examine the relative importance 

of fishing pressure in explaining patterns of probability of encounter and positive density for 

yellow croaker with spatio-temporal models.  

We also encourage future studies to investigate whether patterns of distribution shifts 

and range expansion/contraction for yellow croaker vary among length classes. Length data 

are available for yellow croaker for a fraction of the stations sampled in the Yellow Sea. 

When considering the entire population of Atlantic mackerel (Scomber scombrus) of the 

central Atlantic coast (i.e., all length classes combined), Radlinski et al. (2013) found no 

significant correlation between Atlantic mackerel spatial distribution patterns and SST 

anomality. However, when the Atlantic mackerel population was divided into three length 

groups, the authors found a significant correlation between the spatial distribution patterns of 

>33-cm mackerels and SST anomaly. Similarly, we suspect that some length groups of the 

yellow croaker population of the Yellow Sea may be more sensitive to changes in 

environmental indices than others; therefore, we recommend that future studies develop 

spatio-temporal models for different length groups of yellow croaker and examine the relative 

importance of SST and the PDO in explaining patterns of distribution shifts and range 

expansion/contraction for these length groups. It would then be possible for future resource 

management efforts in the Yellow Sea to craft spatial protection plans for specific length 
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groups (e.g., juvenile or adult fishes) in relation to past and anticipated environmental and 

fishing patterns (Grüss et al., 2018, 2019a).  

In the present study, we considered four alternative delta-Gamma spatio-temporal 

models that included the effects of covariates (SST and/or the PDO) on both probability of 

encounter and positive density or none of these effects. Yet, previous studies that employed 

delta models found that a covariate that had a significant effect on probability of encounter 

did not necessarily have a significant effect on positive density, or vice versa (e.g., Vaz et al., 

2006; Grüss et al., 2014; Weijerman et al., 2019). Thus, in this study, we could have 

considered some additional alternative delta-Gamma spatio-temporal models that included the 

effects of covariates on either probability of encounter or positive density (Grüss et al., 2020). 

However, we found that the spatial distribution patterns, northward and eastward COGs and 

effective areas occupied predicted by the four alternative models fitted in this study were very 

similar. Therefore, we suspect that, had we fitted additional models, the model with no 

covariates would have still been selected based on AIC and the findings of this study would 

have been unaltered. That said, we encourage future studies using our spatio-temporal 

modeling framework for the Yellow Sea to consider additional models including the effects of 

covariates on either probability of encounter or positive density.  

The present study provides important information for the resource management efforts 

that target yellow croaker in their overwintering grounds of the Yellow Sea. It also provides 

a spatio-temporal modeling framework for carrying research investigations for the other 

species that inhabit the Yellow Sea. Importantly, our spatio-temporal modeling framework 

will allow fisheries managers to assess the potential impacts of distribution shifts and range 

expansion/contraction for socio-economically important species on the catches of Chinese 

fishing vessels, in the context of the China-South Korea fisheries agreement. Our spatio-

temporal modeling framework will also contribute valuable information about essential fish 
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habitats (e.g., spawning and nursery grounds) and their spatial evolution through time, 

thereby supporting the development of spatial protection plans and other resource 

management measures for the Yellow Sea.   
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Figure captions 

Fig. 1. Map of the study area showing the spatial distribution of the bottom trawl survey 

stations where the biomass catch rate data used in this study were collected.  

 

Fig. 2. Location of the barycenter of extrapolation grid cells and of “knots” in the study 

area. A 15′ × 15′ (arc-minutes) extrapolation grid was constructed for the present study to 

allow for the production of maps. This extrapolation grid includes 272 cells, whose 

barycenters are shown in (a, b). For computational efficiency, 100 “knots” were specified to 

approximate the spatial and spatio-temporal variation terms of the spatio-temporal model 

developed in this study; these knots are shown in (c).  

 

Fig. 3. Spatial patterns of log-density for the small yellow croaker (Larimichthys 

polyactis) population of the Yellow Sea in each year of the period 2001-2017, predicted 

by the Akaike’s information criterion-selected spatio-temporal model developed for the 

fish population. The color legend is provided in the first panel and has units ln(kg.km-2). 

Only predictions for those years where biomass trawl survey data were available for small 

yellow croaker (i.e., 2001–2011 and 2015–2017) are shown. 

 

Fig. 4. Similar to Fig.3, except that spatial patterns of log-density in each year of the 

period 2001-2017 are shown only for those areas where log-density is greater than 1% of 

the maximum expected log-density over the entire study period. For each year of the 

period 2001-2017, the areas where log-density is less than 1% of the maximum expected log-

density over the entire study period are highlighted in light grey.  
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Fig. 5. Eastward center of gravity (COG; in km) and northward COG (in km) of the 

small yellow croaker (Larimichthys polyactis) population of the Yellow Sea in each year 

of the period 2001-2017, predicted by the Akaike’s information criterion-selected spatio-

temporal model developed for the fish population. For both panels, the shaded areas 

represent 95% confidence intervals. Only predictions for those years where biomass trawl 

survey data were available for small yellow croaker (i.e., 2001–2011 and 2015–2017) are 

shown. 

 

Fig. 6. Effective area occupied (in ln(km²)) of the small yellow croaker (Larimichthys 

polyactis) population of the Yellow Sea in each year of the period 2001-2017, predicted 

by the Akaike’s information criterion-selected spatio-temporal model developed for the 

fish population. The shaded areas represent 95% confidence intervals. Only predictions for 

those years where biomass trawl survey data were available for small yellow croaker (i.e., 

2001–2011 and 2015–2017) are shown. 

 

Fig. 7. Changes in winter sea surface temperature anomalies (SSTA, in °C) in the Yellow 

Sea over the period 2001-2017.  

 

Fig. 8. Pacific Decadal Oscillation (PDO) anomaly (red bars), as well as the cumulative 

sum of the PDO anomalies (orange line), in the Yellow Sea during the winter season, in 

each year of the period 2001-2017. The regime shift in the PDO revealed using the regime 

shift detection method based on sequential t-test is also shown here (blue line).
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Tables 

Table 1. Comparison of the variances of the spatio-temporal variations in probability of 

encounter and positive density estimated by the four alternative delta-Gamma spatio-

temporal models developed in this study (M1-M4). Here, spatio-temporal variation in 

probability of encounter refers to the sum of the spatial and spatio-temporal variation terms 

estimated by the binomial component of the delta-Gamma spatio-temporal model, and spatio-

temporal variation in positive density refers to the sum of the spatial and spatio-temporal 

variation terms estimated by the Gamma component of the spatio-temporal model. % change 

in variance = Percent change in variance compared to model M1 that does not include any 

covariates; SST = sea surface temperature; PDO = Pacific Decadal Oscillation.  
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Model (covariates Variance for the % change in Variance for the % change in 
included) binomial variance for the Gamma variance for the 

component of the binomial component of the Gamma 
model component model component 

M1 (None) 0.0161 - 0.1170 - 
M2 (SST) 0.0127 - 26.7 % 0.1316 + 11.1 % 
M3 (PDO) 0.0162 + 0.4 % 0.0988 - 18.4 % 
M4 (SST + PDO) 0.0128 - 26.2 % 0.1149 - 1.9 % 
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Table 2. Model selection results using Akaike’s information criterion (AIC) applied to the 

maximum marginal likelihood for each of the four alternative delta-Gamma spatio-temporal 

models fitted in this study. SST = sea surface temperature; PDO = Pacific Decadal 

Oscillation.  
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Model Covariates ΔAIC 
M1 None  0 
M2 SST 4.251 
M3 PDO 3.772 
M4 SST + PDO 8.147 
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Fig. 1  876 
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Fig. 2 877 
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Fig. 3 878 
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Fig. 4 879 
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Fig. 5 880 
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Fig. 6 881 
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Fig. 7 882 
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Fig. 8 883 
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